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Abstract 

Weak identification is a well known topic for linear multiple equation models. However, 

little is known whether this problem also matters for probit models with endogenous 

covariates. Therefore, the behaviour of the usual z-statistic in case of weak identification is 

analysed in a simulation study. It shows large size distortions. However, a new puzzle is 

found: The magnitude of the size distortion depends heavily on the parameter value that is 

tested. Alternatively the LR-statistic was calculated which is known to be more robust against 

weak identification in case of linear multiple equation models. The same seems to be true for 

probit equations. No size distortions are found. However, medium undersizing is observed. 
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1. Introduction 

Probit models are by now widely used in applied econometrics (in recent years, e.g., Brav 

2009, Duryea/ Lam/ Levison 2007, Engelhardt et.al. 2010, Esaka 2010, Fitzenberger/ Kohn/ 

Wang 2011, Hajivassiliou/ Ioannides 2007, Hao/ Ng 2011, Hlaing/ Pourjalali 2012, Kauppi/ 

Saikkonen 2008, Litchfield/ Reilly/ Veneziani 2012, Mizutani/ Uranishi 2010, Schneider 

2007). As in linear models, one or more explaining variables might be endogenous. This 

problem can be solved by using instrumental variables (cf. Wilde 2008 for a comparison of 

different estimation methods using instrumental variables). The resulting estimates can be 

used to calculate test statistics for the parameters of the model.  

However, in linear models it is well known that weak instruments may cause considerable 

size distortions (cf. Dufour 2003 for an overview). Wald-type tests like the usual t-tests and F-

tests are especially vulnerable to this problem (cf. Dufour 1997). In probit models a single 

parameter hypothesis is usually tested by the so-called z-test, i.e. the ratio of a consistent 

estimate and its asymptotical standard error. This is a Wald-type test. Therefore, big size 

distortions can be expected. Nevertheless, the topic seems to be largely a white spot in the 

literature. Exceptions are the recent theoretical papers of Andrews/ Cheng (2011a) and 

Andrews/ Cheng (2011b), who address the probit model as an example. However, Andrews/ 

Cheng (2011a) restrict their numerical analysis to a probit model with a nonlinear regression 

function and without endogeneity, and Andrews/ Cheng (2011b) don't analyze the probit 

model numerically.
2
 

The paper contributes different new aspects: First, large size distortions in probit models 

with endogeneity are demonstrated with a simulation study. Second, a new puzzle is shown: 

Whereas size distortions testing the null of a parameter being equal to zero are of medium 

size, testing other values of the parameter gives large size distortions like those in linear 

models. Third, the behaviour of the classical likelihood ratio statistic in that case is analysed. 

Given the simulation design no size distortions are found. However, undersizing is observed 

so that the power of the test might be low. Fourth, as a by-product some insides concerning 

the estimation of probit models with endogenous covariates are given. 

Section 2 shows the econometric model and the test statistics. Section 3 describes the 

simulation design and the estimators that are used. Since a probit equation is part of the 

model, some formulas become more complicated than in the linear case. They are described 

detailed because textbook descriptions are missing so far. Section 4 presents the results of the 

simulation study, and section 5 concludes. For ease of exposition always the binary probit 

model is considered. 

 

                                                 
2
 A further exception is Magnusson (2007), who considered in an early version of his paper the probit model 

with endogenous covariates as an example and found medium size distortions. However, in later versions of the 

working paper and in the published version (Magnusson 2010) the probit example was deleted.  
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2. Model and classical tests 

The equation of interest is a structural probit equation. One of the explaining variables is 

endogenous, and a reduced form equation for this variable is specified. Thus, the following 

type of a model is considered: 

 
*

1i 1 2i 1 1i 1i

2i 21 1i 22 2i 2i

y y x u

y x x v

   

    
   

*

1i

1i

1, y 0
y

0, else

 
 


,   i = 1, …, N, (2.1) 

where y1i
*
 is a latent variable, y1i is its observable indicator, y2i is an endogenous and 

observable variable, x1i and x2i are (K11) and (K21) vectors of exogenous variables, 1, 1, 

21, 22 are unknown parameter vectors of dimensions 1 (1), K1 (1, 21) and K2 (22), and u1i 

and v2i are error terms with mean zero, variance 
1

2

u  and 
2

2

v  respectively, and Cov(u1i, u1j) 

= Cov(v2i, v2j) = 0 for ij. The probit model assumes that the u1i's are normally distributed. 

Whether the distribution of v2i must be also specified or not depends on the methods of 

estimating and testing. If a distribution is needed a joint normal distribution of u1i and v2i is 

assumed, i.e. 

   1 1 2

1 2 2

2
iid

u u v

1i 2i 1i 2i 2

u v v

u , v x , x N 0,
   
  
     

 . 

The parameter of special interest is 1. It is not identified if 22 is equal to zero. Therefore, 

weak identification means that 22 is "near" to zero. Sometimes weak identification is 

quantified by the so-called concentration parameter (cf. Stock/ Wright/ Yogo 2002, p. 519). 

However, this parameter grows with N, and hence it suggests that the problem of weak 

identification is reduced by enlarging the sample size. This is misleading, and therefore it is 

not considered in the study. 

Testing the significance of 1 in empirical studies is usually done by the z-statistic (imple-

mented in almost all econometric software packages):  

 
 

1

1

ˆ
z

ˆ ˆasyVar





. (2.2) 

Given that 1̂  is a consistent and asymptotically normal distributed estimator, z is asymp-

totically standard normal distributed under the assumption of strong identification. The 

parameter 1 can be estimated via two step methods (cf. Blundell/ Smith 1993 for an 

overview) or via joint GMM or joint Maximum Likelihood (ML) estimation of both equations 

(cf. Wilde 2008 for a comparison). 

The z-test is a Wald-type test. The classical alternatives, the Likelihood Ratio (LR) and 

Lagrange Multiplier (LM) test, are based on the ML estimation of the parameters. Here, we 

focus on the LR test. Given the estimates, the LR-statistic is calculated easily, whereas for the 

LM test an estimation of the complicated information matrix is needed, and the results may 

depend on which estimation procedure was chosen.  
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The loglikelihood function of model (2.1) under the standard assumptions above is given 

as (cf. Wilde 2008, appendix 2): 

    
2

2

2
N

2 2i i 2
v

i 1 v

y x
ln l 0.5ln 2 0.5



   
      

   
  

 
 

1 2

1 21 1 1i 1 22 2i 2i 2 i
1i v

2
v vv

x x y x1
y ln

1

         
      

        

  

  
 

1 2

1 21 1 1i 1 22 2i 2i 2 i
1i v

2
v vv

x x y x1
1 y ln 1

1

                   
           

, (2.3) 

where xi = (x1i, x2i), v1i = u1i + 1v2i,  
21 1 2 v v, , , ,


       , 2 = (21, 22), v = 

Corr(v1i, v2i), and 
1v = Var(v1i). Since only the ratios of the structural parameters and 

1v  are 

identified, the latter cannot be estimated separately. Therefore, in the simulation study it is 

replaced by its true value. 

The hypothesis, which is tested, is 

 H0: 1 1     vs.  H1: 1 1   . 

Denote ML̂  the unrestricted ML estimator of  using (2.3) and RML̂  the restricted ML 

estimator under the null hypothesis. Then, the LR statistic is defined as  

     ML RML
ˆ ˆLR 2 ln l ln l    . 

Under the usual assumptions (including strong identification) LR is asymptotically 
2

(1) 

distributed. 

 

3. Design of the simulation study and estimation methods 

The simulation design is as simple as possible to avoid arbitrary choices of unnecessary 

nuisance parameters. However, ML estimation of this simple model causes numerical 

problems, i.e. many replications ended with the message "maximum iterations reached" even 

after 200 and more iterations. Therefore, GMM estimation is used to calculate the z-statistic. 

To analyse the behaviour of the LR-statistic a slight generalization of the basic model is used 

that avoided the numerical problems on the one hand and did not change the results 

concerning the weak identification on the other hand (details see below). 

In (2.1), the second equation is a reduced form equation. Endogeneity of y2 can be caused 

by two reasons: correlation between the error terms of the structural equations and/ or 

simultaneity between y1 and y2. Both cause a correlation between u1 and v2. In the simulation 

design we focus on simultaneity because it can be interpreted more easily. Nevertheless, all 
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results can be reproduced by assuming correlation between the error terms of the structural 

equations. For simplicity, in the first design 1 = 21 = 0 and K2 = 1.  

Therefore, the basic data generating model is of the following structure: 

*

1i 1 2i 1iy y u   ,  
*

1i

1i

1, y 0
y

0, sonst

 
 


 i = 1, ..., N  (3.1) 

*

2i 2 1i 2 i 2iy y x u    . 

The residuals u1i and u2i were drawn independently from a N(0, 16) distribution, i.e. the 

residual variances are equal for both equations. The exogenous variable xi was drawn from a 

N(0.5, 16) distribution so that the expected number of ones for y1i differs from the expected 

number of zeros. Weak identification is equivalent to 2 “near to zero”. In the simulation, 2 

= 0.01 is chosen. Smaller values of 2 did not sharpen the results any more. The case of 

strong identification was simulated by 2 = 1. The simulations were done for the sample sizes 

N = 400 (medium size) and N = 2000 (large size) and were replicated 5000 times.  

The estimated model was  

  *

1i 1 2i 1iy y u   , y1i as defined in (3.1), i = 1, ..., N (3.2) 

2i 2 i 2iy x v   ,  

where 2
2

1 21


 

  
 and 2i 2 1i

2i

1 2

u u
v

1

 


  
. Both parameters in (3.2) are exactly 

identified.  

(3.2) is estimated via GMM using the “natural” moment conditions (cf. Wilde 2008) 

 
  

 

1i 1i 1 2 i v

i 2i 2 i

x y x
E 0

x y x

    
  
   

. 

Denoting  

 
1

2

 
   

 
,  

  
 

1i 1i 1 2 i v

i

i 2i 2 i

x y x
m

x y x

    
  
   

, and    
N

i

i 1

1
m m

N 

    

it is calculated  

    GMM N
ˆ arg min m W m



    , WN a weighting matrix, 

with regard to .
3
 Since the number of moment conditions is equal to the number of 

parameters the weighting matrix in the criterion function of the GMM estimator does not 

matter theoretically and the same asymptotic covariance matrix of the estimator can be used 

for all choices of WN (Harris/ Mátyás 1999, p. 22). To be more precise, the asymptotic 

covariance matrix is (cf. Greene 2008, p. 445):  

                                                 
3
 Again, 

1v is not identified. It is replaced by the standard deviation of v1 in each replication. 
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  
1

11ˆasyVar G G
N


     , 

  asyVar Nm  , 

 

   

   

(1) (1)N N
i i

i 1 i 11 2

(2) (2)N N
i i

i 1 i 11 2

m m1 1

N Nm
G

m m1 1

N N

 

 

    
 

    
     
 
   

 

 

, 

 
 

1 1

(1) 2
i i 2 1 2 i

1 v v

m x x      
  

    

, 
 

1 1

(1) 2
i i 1 1 2 i

2 v v

m x x      
  

    

,  

 
 (2)

i

1

m
0

 



, 

 (2)

i 2

i

2

m
x

 
 


. 

Given the assumptions above this matrix can be estimated consistently via 

  
1

11ˆ ˆ ˆˆest asyVar G G
N


   

 
, 

    
N

i i

i 1

1 ˆ ˆˆ m m
N 


    , Ĝ G after substituting ̂ for . 

The square root of the first diagonal element is the denominator of the z-statistic (2.2). The 

nominator is calculated using the identity matrix and the estimator 1ˆ  of the optimal 

weighting matrix. The results were often the same. However, sometimes the identity matrix 

produces numerically more stable results, because no inverse needs to be calculated. 

Therefore, the reported results are based on the identity matrix. 

Concerning the ML estimation of the basic model everything works fine for strong 

identification, whereas for weak identification the algorithm did not find the maximum for 

nearly half of the replications. This is caused by the following: In the basic model, for 

instance the second summand of (2.3) reduces to  

 

1 2

1 2 2i 2i 2 i
1i v

2
v vv

x y x1
y ln

1

     
     

        

. 

Thus, the parameter 1 is part of the log likelihood function only in the product 12. However, 

in case of weak identification 2 is close to zero, so that it is very difficult to find the "true" 

value of 1. The log likelihood function is rather flat concerning 1. Therefore, a constant is 

added in both equations and the following data generating process is considered: 

 

*

1i 1 2i 10 1i

*

2i 2 1i 20 21 i 2i

y y u

y y x u

   

    
  

*

1i

1i

1, y 0
y

0, else

 
 


, 

 where 10=0.5, 20=0.25, xiN(0,16) for all replications, and u1 and u2 are as above. 
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The estimated model is now 

 

*

1i 1 2i 10 1i

2i 20 21 i 2i

y y u

y x v

   

    
  

*

1i

1i

1, y 0
y

0, else

 
 


 

 with 20 2 10
20

1 21

   
 

  
, 21

21

1 21


 

  
, 2i 2 1i

2i

1 2

u u
v

1

 


  
. 

As expected, this avoids the numerical problems discussed above without changing the results 

concerning weak identification. The latter aspect was confirmed for those parameter values 

for which the optimum was found in the basic model. 

 

4. Results of the simulation study
4
  

Two cases are distinguished: First, the null hypothesis “1=0” is tested, i.e. the significance 

of y2. Second, the null hypothesis “1=c” is tested, c a constant different from zero, and the 

results for c=2 are presented. In both cases, the simulations were done for different values of 

2. Small values of 2 correspond with a “small” problem of simultaneity. We choose 2 

= 0.5 . A “medium” problem of simultaneity is represented by 2 = 1.5 , and a “large” 

problem of simultaneity is represented by 2 = 3  and 2 = 6 . Since the differences between 

a medium and a large sample size were only moderate, the results are presented only for N = 

2000. 

 

4.1 Results for the z-Test 

In case of testing significance and under strong identification, no size problems can be 

observed: 

 nominal size 

2 1 % 5 % 10 % 

3 0.0120 0.0470 0.0982 

0.5 0.0098 0,0502 0.1002 

3 0.0094 0.0492 0.0964 

Table 1: Percentage of rejections of the z-statistic under strong identification, H0: 1 = 0. 

In case of weak identification the picture is mixed.
5
 If there is only „weak“simultaneity, an 

extreme undersizing is observed. However, “strong” simultaneity causes medium size 

distortions:  

 

                                                 
4
 All simulations were done using R. The R codes are available on request. 

5
 This result is similar to that of Magnusson (2007). 
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Figure 1: Percentage of rejections of the z-statistic under weak identification, H0: 1 = 0, nominal size 5 %. 

Nevertheless, the size distortions are smaller than those in linear simultaneous equations. 

Therefore, the data were also simulated using other values of c. Afterwards the results for 

c = 2 are shown as an example. Again, in case of strong identification, no size distortion 

appears: 

 nominal size 

2 1 % 5 % 10 % 

3 0.0110 0.0470 0.0910 

0.5 0.0056 0,0356 0.0688 

3 0.0086 0.0456 0.0896 

Table 2: Percentage of rejections of the z-statistic under strong identification, H0: 1 = 2. 

However, in case of weak identification and strong simultaneity, the size distortions 

became very large (2 = 0.5 has to be omitted here because 1 is no longer identified in that 

case): 

  

Figure 2: Percentage of rejections of the z-statistic under weak identification, H0: 1 = 2, nominal size 5 %. 

The empirical size becomes more than tenfold as high as the nominal size. Thus, in probit 

models similar size distortions as in linear simultaneous equations models can be observed. 
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4.2 Results for the LR-Test 

In case of testing significance and under strong identification, again no size problems can 

be observed: 

 

 nominal size 

2 1 % 5 % 10 % 

3 0.01 0.0494 0.101 

0.5 0.012 0,0488 0.0986 

3 0.0106 0.0548 0.0998 

Table 3: Percentage of rejections of the LR-statistic under strong identification, H0: 1 = 0. 

Simulating the case of weak identification, 2 = 0.0001 is used, i.e. a smaller value of 2 is 

needed to get the strongest results. They differ substantially from those for the z-test: 

   

Figure 3: Percentage of rejections of the LR-statistic under weak identification, H0: 1 = 0, nominal size 5 %. 

If simultaneity is weak, the observed share of rejections is near to the true size, if it is 

medium or strong, undersizing is observed. Results for 2 = 6 are missing, because the 

program stopped with an error message for some replications. This message was caused by 

the following: Consider for instance 1=0 and 2=6. This implies v=0.9864, i.e. the bivariate 

normal distribution of v1 and v2 is near to singularity. Furthermore, in (2.3) 2

v1 1 6.08  , 

 6 1   ,  1 6 0   , and   ln 1 6   is not defined. Therefore, ML estimation is 

less robust against a high correlation of the reduced form errors than GMM estimation.  

The results for the LR-test do not change if 1=2 is tested. In that case 2=6 is possible: 

  

Figure 4: Percentage of rejections of the LR-statistic under weak identification, H0: 1 = 2, nominal size 5 %. 
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Again, in case of weak identification and strong simultaneity the empirical size is about 

half of the nominal size. 

 

5. Conclusion 

The paper is a kind of first serve concerning the analysis of weak identification in probit 

models with endogenous covariates. It shows remarkable size distortions concerning the usual 

z-statistic. However, further research is needed to clarify why the magnitude depends heavily 

on the tested hypothesis. The likelihood ratio statistic could be a conservative alternative. 

However, its power might be low. Thus, further research is useful to clarify how advanced 

methods like those of Andrews/Cheng (2011b), Dufour (2006) or Kleibergen (2005) will 

work for probit models with endogenous covariates. 
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